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Cut Scores for Personnel Decisions

“ David T. Chuang, Joawes J. Chen and Melvin R, Novick

The University of lowa

Cut-scores are commonly used in industrial personnel selection,

academic selection, minimum competence certification testing, and

professional licensing, using simple and multiple-person/multiple-
job category decision paradigms. Previous approaches have proposed
cut-score solutions in a variety of applications (Gross and Su, 1975;
Novick and Lindley, 1978, 1979; Petersen, 1976; and Van der Linden
and Mellenbergh, 1977) using threshold , normal ogive, linear and
discrete utility functions. This paper considers these results by

investigating conditions on the posterior, likelihood and utility

functions required for a cut-score to be valid. The result is the
showing that cut-scores are appropriate in a wide range of applica-
tions, but they are less than universally appropriate. Following this
a general paradigm and computational algorithm for cut-score

solutions is developed under the assumption that the conditions for

a cut=score have been satisfied.




Introduction

In a decision problem, a Bayesian has a probability distribution
over the states of nature and a utility tunction over actions and states.
A Bayesian makes a decision by maximizing expected utility., Applications
of Bayesian decision theory to personnel selection have recently been
studied by Cross and Su (1975), Novick and Perersen (1976), Novick and
Lindley (19728, 1979), Petersen (1976), Potersen and Novick (1976) and
Van der Linden and Mellenberpgh (1977). All except Novick and Lindley
(1978, 1979) assume utility functions are threshold or linear, and the
likelihood functions used are also limited. In this paper we
study personnel decision problems using more general utility and likeli-
hood functions.

In section one of this paper we discuss the likelihood functions
and prior distributions we shall use. We show that the stochastic
increasing (SI) property for the posterior distribution is a necessary and

sufficient condition for a cut-score for an arbitrary utility function.

As a special case, we study likelihood functions satisfying
monotone likelihood ratio (MLR), a condition studied extensively in

Karlin and Rubin (1956), Karlin (1957a, 1957b),Lehmann (1959) and DeGroot

(1970). We define the monotone posterior ratio (MPR) property and show
that it implies the stochastically increasing property: thus it implies
a cut-score for an arbitrary utility function. We also show that MLR
implies MPR with any prior distribution.

Tn section fwo we note that most pestericr and predictive Jdensities
do not satisfy the MPR or ST properties, but sihow tiat in important cases
cut=scores are appropriate provided that discrimination is not required
in the tails of th> distribution. 1In particular we carefully study the

posterior "r' distribution obtained with many Bayesian normal models.




In section three we provide a very general multi-person/
multi-job category paradigm appropriate for a wide variety selection,
guidance and classification applications. By assuming the appropriate-
ness of cut=scores based on the theory and restrictions of section 2
we are able to provide simple computational algorithms for the general
paradigm.

In this paper, we use the following notation. We use N to denote
the total number of applicants. O is the parameter we are interested in
and T(xi) is the test score of the ith applicant. A job performance
score is denoted by Yi- In one context we use A,B,C,....R to represent
the names of jobs that have openings. U,(8), UB(B), uc(e), ....UR(O)
are the utilities of assigning an applicant with ability 6 to jobs
A,B,C,... and R respectively. The expected utility of assigning
a person with test score T(x) to a iob, say A, is E(UA(O)). which is a
function of T(x). The indicated expectation is with respect to the
Bayes distribution for 6. We let VA(T(x))E E(UA(G)). This notation
emphasizes that V does not depend on 6. An optimal decision procedure
is a procedure that maximizes the sum of expected utilities of the
selection across all persons to be selected. In another context the
utility function is defined over the performance scores y. The utilities

are then UA(y),..., UR(y) and expectations are taken with respect to the

posterior predf&tive distribution for y. All results are valid whether the

focus is on the unobservable ability (8) or the observable performance y.




Likelihood Function and Prior Distribution

Let 6 be a person's ability (or a measure of performance), and
T(x) be his test score. 1t may be reasonable to desire that if one
person has a higher test score than another then the statistical
analysis-will provide some evidence that the first person's ability is
not less than the second, all else being equal. Thus it may be reasonable

to desire that the deasities p(x|8) have monotone likelihood ratio (MLR).

Definition 1: The real parameter family of densities p(x|8) is
said to have monotone likelihood ratio if there exists a

real-valued function T(x) such that for any 01 < 02 the likelihood

functions p(xlez) and p(xlel) are distinct and the ratio p(xloz)/P(xlel)
is a non-decreasing function of T(x). The MLR condition is a particular
technical requirement which implies that increasing values of T(x) will
provide increasing evidence from the likelihood that 0, is greater than
01 when in fact 02 > 01.
It can be shown that the exponential family, (normal, binomial,
Poisson, exponential, etc.) and some other widely used distributions
have MLR. This condition is not satisfied by all distributions (e.g.
the predictive distribution of Student's t from linear regression);
however, in such cases it may be except for extreme values of T(x).
Monotone likelihood ratio is generally an easy condition toverify,
From a docigion theory point of view, we consider 6 as a random
variable and define a similar ratio monotonicity condition for such

distributions.




Definition 2: The class of posterior densities p(f|x) is said to
have monotone posterior ratio (MPR) if there exists a real valued
function T(x) such that for any T(xl) < T(xz) the posterior distributions
p(OIT(xl)) and p(OIT(xz)) are distinct and the ratio p(elT(xz))/p(OIT(xl))
is a non-decreasing function of 6. g

We can see definition 2 is exactly the same as definition 1 except
the roles of © and T(x) are exchanged. The suggestion here is that for
any prior distribution, higher values of T(x) will be suggestive of
higher values for o in the posterior distribution. The following lemma

establishes this condition for MPR.

Lemma 1: Suppose p(6) is any prior distribution and f(xle) has
MLR in the statistic T(x), then the posterior distribution p(a|x)

of 8 has MPR with statistic T(x).

Proof: By definition p(8]x) = ~—2(0) f(x]e)
Ip(e)f(x|e)de

Then the posterior likelihood ratio is

P@Ix)  p()f(x,0) p(8)£ (x, |8)do
ICIEY) ;p(e)f(lee)de' P(O)E(x, [0)
Ip(e)f(xlle)dﬁ f(lee)
; Ip(8)f(x,|0)de ' £(x, 0

By definition of MLR, we know for any two

values e1 < 62 and T(xl) < T(xz) that

f(xllez) : f(xz|°2)

f(x lo)) — f(xy]0))

£(x,|0,) £(x,]0,)
and thus ot s 2 -
f(x,]0)) f(xllez)
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Since X aXoa )y and 02 are all fixed we can write this as

p(el, x:,) 3 p(ozl x:.)

B p(“'zl"—p
and conclude that p(olx) has monotone posterior ratio.
In this paper we generally use the same prior distribution for
every applicant. This is appropriate when the applicants have the
same kind of background. If the applicants are from different groups
we might use diffgrent prior distribution for the applicants from
different groups. The force of this lemma is that with identical prior
distributions an ordering on T(x) produces the same ordering as would
an investigation of probability ratios from the posterior distribution.
While MLR and MPR are useful conditions, a weaker condition is

adequate for our purposes.




Definition 3: A posterior distribution is said to be stochastically
increasing (SI) in the statistic T if T(x)) > T(x,)

and for 21) 8 we have F, (8)

r(x )(ﬁ). where F

v (8) and F (6)
1) l(xl) T(x2)

are the cumulative posterior distributions of 9 with observations

< F
- T(x2

T(x]) and T(xz) respectively.
The theorem that follows is the foundation of this paper. We will
use properties of this theorem throughout the paper.
Theorem 1: Let g(f) be an arbitrary non-decreasing function of 0, then
E[g(@)!T(x)] is a non-decreasing function of T(x) if and only if
the nosterior distrihbution is stochastically increasing in T(x).
Proof: We first assume that T(xl).zT(xz) and for all 6 we have FT(xl)(G)
= FT(xz)(ﬁ). Proof of sufficiency then follows the argument given by Lehmann
(1959, p. 114). We now extend this work and demonstrate necessity.

Assume for any g(0), E[g(8)|T(x)] is a non-decreasing function of

T(x). In particular we assume:

*
-1 <
a(8) = if e_e’t
0 if 0>0 3
*
then E[g(d)|T(x)] = -FT(x)(e ).
*
Thus when T(x,)> T(x,), we have —FT(xl)(e)l -FT(xz)(e ).
*
‘ In above 8 is any 8e@ thus for any 6 and T(x,)> T(x,) we have F ®) < !
| 1 = 2 T(xl) - |
FT(XZ)(e). |

A posterior distribution satisfying MPR also satisfies

SI.  (Lehmann's proof for MLR requires only trivial modification for this

case.) Thus we have the following corollary:

Corollary 1: Suppose E(xle) has MLR with statistic T(x) and g(6)

is a non-decreasing function of 0, then E[g(B)lT(x)] is a non-




e

decreasing function of T(x). (Similarly if h(6) is a non-increasing
function of 8, then E[h(O)!T(x)] is a non-increasing function of T(x)).
In application g(8) will be a utility function U(8) and we will refer
to this property as the monotone expected utility (MEU) property. The
force of this corollary is that a cut-score (CS) x can be set is guaranteed.
For if 8 has MPR and T(xz).iT(x*) <T(x))

* "
then  E(e(®) | T(x,)} <E[g(8) | T(x )] <T(8(®) | T(xp].

Thus, in summary, we have for an arbitrary utility function
MLR = MPR # SISPMEU<¥ CS
Cut Scores for Specific Models
The weakness in the theory of the previous section is that many
posterior distributions are not MPR or SI. Specifically in a wide
range of applications the posterior marginal distribution will be "t".
The following analysis demonstrates that these "t" distributions are
not SI or MPR and that the use of a cut-score is not necessarily
justified in all cases.
Consider the simple linear regression model,
y=a+ g8x + e
The value a and 3 are respectively the intercept and slope of the linear
regression function. y is the performance ability and x is the test

score which is the same as t in the previous sections. Following the




development of Petersen (1976) we assume that the variance of the error

is homoscedastic, i.e.,
Var(y | x) = 02
for all x. We also assume that e is normally distributed for fixed a,B
and x.
Suppose that a,B8 and log ¢ are uniformly and independently distributed.

Given n pairs of observations (x,y) the posterior predictive distribution

y for an applicant with the score X = X has a Student t distribution
of (n-2) degrees freedom, specifically, (Novick and Jackson, 1974)

given X = x

H* '
A Yy SRR e
g (1)
sl n+ 1 2 (x0 - X) ]1/2
n I(x - x)*

= - 2 -2 2 - 2
where x = IX/n y = fy/n Sx = 3(x - x%), Sy =3y -y,

S, = T(x-% (-, 8=5../52 and o® = (s2 - 52 1s%)/(n - 2)
Xy 3 2 Xy “x y Xy “x '

*
Let y be the minimum level of satisfactory performance for a threshold

utility, then for a given test score X = X, the expected utility is

E[U(y)'xO] = Pr(Y >y* | 2,0

0

* ~ P-4
y--[y+ 8 (x, - x)]
= 1-Pr e 2 (2

a

n+1 (x, - x)°
s fimnd sing ]1/2
. n $ix = x)

where t is the standard student t variable with (n - 2) degrees of

freedom.




To see that the posterior predictive distribution of the student t

varjable in (1) does not have SI. Let

R(x) = [1————-0-")]

n+ 1 (x Xy = x)

- R—— + I
sl n )(x - x)°

172

Equation (2) shows that the expected utility increases as g(xo)
decreases. Therefore, the cut-score can be set if E[U(y) IxO] is a

decreasing function of Xoe Taking the derivative of g(xo) we get

_é n+ 1

Setting 3 g(xo) < 0, we have

on

-(y* - y) e m——— é n+1l

n

et -(y* 9 (x, n+15(x-x)(y-y)

as the condition required for a cut score. Consider

(69 y*= ¥ » then (3) is equivalent to

0<I(x-x) (y-y)
In this case a cut score can be set if the corrected sum of cross products
(or the slope of the regression line) is non-negative. Now consider

* —
ii) y # vy then (3) becomes

25 =

5 e R -
n+ 1, Z(x-x) (y-y) for y >y,
n y‘ - v

o — * -
n+1l. ¥(x-=-x)(y-y) for y <y
n - T
Y =AY
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*
Combining (i) and (ii) for any arbitrary threshold utility y , a
cut score can be set if

- n+l E(x - )y -y) < Ry 5 x+n+1 I(x-x) (y -A;)

- X v
x “ ly*“ g = Iy 5]
(6)
or U g
I ¥ ;‘ ‘ < n+ 1 Il(x ; X ) (y - x)
& e ] Q)
The equation (7) can be expressed as
= * -
o U (8)
s s =
X y

where r is the sample correlation coefficient for (x,y) and

ety i
Rl el

This shows that a cut-score can be set unless n is small, r is small,
y* is distant from y and there are x values very distant from X.
This condition may be satisfied for some scores in the case of
high selectivity.
The 1968 data on college 7 for junior college test scores from
the American College Testing (ACT) Program will be used for the example.
The y variable is the first semester grade-point average (GPA) and the

predictor variable x is English test score. Since most colleges require

~




‘ : *
a minimum 2,00 for graduation we set y = 2,00, The original data contain

105 observations. For the purpose of the example we picked the f{irst

10 observations. For n = 105, x = 19,13, v = 2,28, 52 - 2766.13,
X

. :
Sy = B4.34, S = 235.47, 8 = 0.085, 8 = 0.79 and D = 849; for n = 10,

-~

X = 22,1, y= 2.66, S

x ro

-
- -« -
= 140.9, 8.7 = 6.4, 5 = 5.54, = 0.039,

s =0.88and D = 9,

St i n+l X(;—i‘(v-yl
n 1y -y

Since the range for ACT English Scores is from 0 to 36, for n = 105,

the condition in (5) {is satisfied forall «x therefore, a cut score can

03
be set and the expected utility is an increasing function of the test

score. For n = 10, the condition in (5) is violated for XO > 32, hence

setting a cut score is infeasible. Table 1 contains the values of the

expected utility for ecach sample for x. = 0(2)36. For n = 105, the

0

expected utility is increasing in test scove Xy 3 however, for n=10,

the expected utility increases and then decreases at L 32, Hence a

cut=score cannot be set.

Insert Table 1 about here

It {s possible to treat a more general class of utility functions
in precisely the same way. Suppose that the utility of selecting a
person of ability vy i{s a normal ogive. Let o and 002 be the mean and
varifance for this ogive so that

(y - un)

wy) =@ v

0
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1f n is large the t distribution in (1) is approximated by a normal

variable with mean y + ;(xo- x) and variance
=2 -2
$2{[(n + D/n)+ [(xq = )7/ Lx = x)7]).

The expected utility (Novick and Lindley, 1979) of selecting a person

with score xo is then

y + 8(xy - %) = u

2
o =P I (CI VN (xg - B
i . I(x - 02

1/2

Following the techniques used previously, the condition for which the

cut-score can be set is

X0 " *| u-§l cr+ D +rf0 (9
s

s
X Y

This result may be compared with (8 ) noting that in the special case

0. =  the two expressions agree. For the previous example (n=10) (9) will be

0
satisfied provided oo>'0.58. Threshold utility is a special case of

normal ogive utilitywith g, =0 and thus it is seen to be the "worst case'.

This may generally be true though we offer no proof for other ogival forms.
In a recent topical issue of the Journal of Educational Measurement

there was some controversy over the issue of whether or not the setting

of cut-scores was feasible. One paper (Glass, 1978) was very

pessimistic, another was very optimistic (Hambleton, 1978). Others

were less firmly committed on this point. All of the discussions in

these papers seemed to be in the context of threshold utility, though

it was not always apparent that a clear distinction was being made

between the minimum criterion level 0* in threshold utility and the

cut-score x* in the observation space. Criticism (Glass, 1978) of attempts to

specify a threshold cut 6* seem valid as they are effectively criticisms

of threshold utility which Novick and Lindley (1978) clearly suggest is

no better than a first rough approximation to a realistic utility

function.

gy $ -
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The point of the present paper is that cut-scores generally do
exist and can be rationally specified to the extent that utility functions
can be accurately specified. They do not depend on the assumption of

threshold utility. Only the lesser assumptions of monotone likelihood

ratio, stochastic increase, or the demonstration of monotone expected
utility locally for the particular likelihood, prior distributions and
utilities are needed. Thus a focus of work ought to be on the development
of coherent bias-free methods of assessing utilities. In this connection
a recent discussion by Novick, Chuang, and DeKeyrel (in press) seems relevant

The counter argument to this is that the utility of selection often
cannot be related to available criteria and that the more important
factors needed to be evaluated less formally. This paper does not

contribute to the debate on this point but does argue that other problems

are manageable.
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Selection for a Single Job Catepory

In this section we consider that there are N candidates applying
for one job category A, that has openings. We will study optimal
selection procedures for quota free and restricted models.

Suppose job A has openings.und let the utility of accepting someone
with ability 0 be UA(O) and the utility of rejecting someone with ability
0 be UR(E). In the case of personnel selections, the greater the ability
of the candidate the greater will be his value to potential employers.

We may assume that UA(O) is a non-decreasing function of 6 and UR(G) is

a non-increasing , constant, or more slowly increasing function of 6 than
UA(G). Then the marginal utility of selection, UA(U) ~ UR(G), is a
non-decreasing function of 0.

Theorem 2: Under the conditions of theorem 1. If UA(G) - UR(B) is
a non-decreasing function of 0 then there exists a cut-score T(x*) such
that

E[U, (9) | TG > E[U(0) [ TGO for T(x) > T(x')
and

E[U,(0) [ TG)] <E[UL(0) | T(x)] for T(x) <Tx)

In extreme cases T(x*) may equal -® or -+~ ,

The above result is a special case of a theorem in Karlin and
Rubin (1956). The proofs can be found in Lehmann (1959, p. 74). The
importance of this theorem is that the existence of cut-score is derived
rather than assumed. Thus in the case of monotone posterior ratio

and monotone utility functions a cut score can always be used to maximize

utility.




/e

Theorem 2 shows that if the applicant's test score T(x) is greater
then T(x*) then the expected utility for acceptance is higher than
rejection (hence he should be accepted). This is equivalent to saying

that the expectation of UA(O) - UR(O) is non-negative, that is,

E[U, (0= U (0 | TG)T20  for T(x) > T(x").
Similarly, we have
B[UA(O) - UR(U)IT(X)] =0 for T(x) <T(x*).
Therefore, the cut score T(x*) is the point at which
E(U,(8) - Up(0) | T(x) ] changes sign; that is, E[U,(0) - U (8) | T(x)]
changes from nonpositive values to nonnegative values at T(x*).
In particular, if E[UA(O) - UR(G)[ T(x)) is continuous at T(x*) then

*
E[U,(8) =~ UL(6) | T(x)]= 0.

The following theorem shows that under our conditions, if we have two

applicants and exactly one opening we should accept the one with the

higher test score.

Theorem 3: Under the conditions of the theorem 1, If UA(G) - UR(O)

is a non-decreasing function of 6 and T(xi) > T(x,), then

J
VACT(xi)) 2 VR(OE)) Z_VA(T(XJ)) + Ve (T(x,)),

m

where V, (T(x)) E[UA(G){T(x)] and V_(T(x)) EE[UR(B)IT(X)]

Proof: By Theorem 1, E[U,(0) - UR(O)IT(x)] is a non-decreasing

function of T(x). Thus,

E(U,(8) - Up(8) [ T(x)1 > E[U,(8) - UL (0) IT(xj)l

S0

Vo (Tx)) = Ve (T(x)) 2V, (T(x,)) - Ve (Tx Y

J 3

then

A (T(x,) + VR(T(xj)) ;VA(T(xj)) o VR(T(xi)).

Assume that the Lest scores of N oapplicants are 'l‘(x]), T(xz),




T(xN), without loss of generality we can assume T(xl) 2 T(xZ)' e

= T(XN). For job category A we may have three situations:

(1) quota free, i.e., we may accept as many applicants as we want;

(2) we want to accept exactly NA applicants where Ny <N;

(3) we want to accept at most N, applicants where NA.iN.

A
Note that if NA = N then (3) specializes to (l). The decision rules
for these cases are very simple. From Theorem 2 there exists a cut-

score, say C, such that

VATE) 2V (T(x))  for T(x) >C

and
VoA (T(x)) < Ve (T(x)) for T(x) <¢
then .
(a) The optimal decision procedure for situation (1) is to accept
the i-th applicant if T(xi) > C and reject him if T(xi)< Cs
(b) The optimal decision procedure for situation (2) is to accept
those NA applicants who have the highest test scores (i.e.,
accept those who have scores T(xl), T(xz) e T(xNA)).
(c) The optimal decision procedure for situation (3) is: if
T(XNA)I.C then accept the first NA applicants, i.e., the
same as (b); if T(xNA) < C then we will accept applicants whose
scores are greater than C, i.e., the same as in (a).
Proof: .

(a) 1is trivial, because we maximize our utility of assigning

Sl oy

each applicant;thus we have maximum total utility.

(b) 1is a direct extension of Theorem 3. If we exchange our
decision about any two applicants, we can see by Theorem 3
our total expected utility will not increase. Thus we have

optimal decision procedure,




(¢) 1is a combination of (a) and (b) and we can see the procedure
is optimal immediately.
Again we emphasize that this theorem is generally false in the
absence of SI but the use of a cut-score may be valid with reasonable

practice. We also note that while we assume UA(G) - UR(G) is

/
nondecreasing in 0 we are not assuming that the derivative UA(O) is

nondecreasing in 6 . In particular the following schematic is valid

and should be considered typical.

Figure 1 UA(G) - UR(S)
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Selection for Multiple Job Categories
In this part we consider that jobs A, B, C, ... R have openings.
We also assume there are N applicants and the utllity of assigning
someone with ability 0 to jobs A, B, C, ... R are UA(O), UB(O), A UR(G)
respectively. In general these kinds of problems are very difficult. We
will consider an important special case of the situation by assuming
UA(G) > Ug(ﬂ) wiin Ué(o) for all 8. (We can Qeaken this condition

gsunine U (8) - U (8). U (6) - { ; -
by assuming lA( ) lB(t). lB(l\ Uc(ﬁ). s UR_I(O) UR(G) are all

non-decreasing functions of 9.) An example of this special case may be
that job A is group leader, job B is system analyst, job C is programmer
and job R is rejection. After several years experience a programmer may
be promoted to a system analyst and a system analyst may be promoted to a
group leader. Thus jobs A,B,C, R may satisfy our conditions.

The following theorem shows the existence of the multiple cut-scores,
a result in Karlin and Rubin (1956).

Theorem 4. Under the conditions of theorem 1. 1If UA(B) - UB(O),
Ug(®) = Ua(8), ... Up 1(8) - Up(8) are all non-decreasing functions of 9,

then there exists

> 3 a ¥y
CA > ('.“ : vee 3 ('R—l such that

if T(x) > C, then V,(T(x)) = V, (T(x))

f C, > T(x) > C, then V(T(x)) = V, (T(x))

if C, > T(x) > Co then Vo (T(x)) = Vv (T(x))

if C. ? Tix) then VR (T(x))= V, (T(x))

where Vy (T(x)) = Max {V, (T(x)) Vg(T(x)), «ovy Vp(T(x))

(10)



From the above result we can see very clearly that if we have an

applicant, then we use CA' CB.... CR_1 as cut-scores and decide to which
job to assign him. For example if T(x) > CA then we assign thg applicant
to job A, {if CA > T(x) » CB then we assign the applicant to job B ... etc.
Intuitively we assign a person with higher score to a job that gives
higher marginal utility (for example, job A). Generally we find that
CA' CB"" CR-l are distinct. Thus every job has a chance to receive
the applicant. The following theorem shows how to find CA’ CB""’ CR-]'
- Tts proof can be obtained by repeatedly applying theorem 1.

Theorem 5: Under the conditions of theorem 4. Assume
E[U,(8) - Uy(e) | T(x)], E[Ug(8) - U.(8) LR s iss E{Ug_,(8) - Up(8) [ T(x)]
are continuous functions of T(x), let

E[U,(8) - Ug(8) | T(x) =C,] =0

E[UL(8) = U.(9) I T(x) = Cyl = 0
' (11

E{Uy_,(8) = Up(@) | T(x) = Cp ,1 =0

R-1

1f CAz-CBE-""CR-l’ then the equation (10) holds. Hence, Ca» CB""'CR-I

are the cut-scores.

For the conditions CA:_CB 2 i 1CR-1 in theorem 5 , if one of the
equalities is violated, then the corresponding scores for the solutions
in (11) are not the cut-scores. Suppose that there are only three jobs,

A, B, and C. Let CA and CB be the solutions of (11) such that CB 1CA’ and

let e S
E[UA(O) = U.(8) | T(x) LAC] 0

(12)
Then CB:-CAC:CA and

if T(x) >C, then V, (T(x)) = Vv, (T(x))

c
tf T(x) <C

then V. (T(x)) = Vv, (T(x)).

AC
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Thus, CAC of the equation (12) is the only cut-score, and job B

does not have a chance to receive any applicant.

The condition UX(U):.U; (8) ;3..;.U£ (8) or the alternative

UA(O) - UB(O). UB(Q) - Uc(g)_ (8) - Uklﬂ) are all non-decreasing

U
R-1
functions of ¢ can be relaxed to include important additional cases.

Suppose that for 09>8_ , UA(U) - UB(O) is a positive function

1
of 8; for 8,20 > 8,44 Ug(8) - Us(8) is a positive function of 8,etc.
Suppose further that a multiple cut-score solution yields cut-scores
CA' and CB' then it is evident that the computed solution {s a valid
solution. Thus we see that the required monotonicity properties are
local rather than global properties.

The monotonicity assumption on utility differences in the weaker
form considered above seems eminently reasonable in both employment and
educational applications. Consider an underlying '"general ability, 6 "
and the occupational careers of physicist (A), electrical engineer (B),

and electrician (C). Then the utility structure pictured in figure 2

may be valid.

Insert Figure 2 About Here
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The following example demonstrates the use of cut-scores in
multiple job assignments. Suppose there are three jobs. A, B and C

are available and suppose that the utilities of jobs A, B, and C are
y~2.
UA (y) - §{l 6)

Uy &) =F -2.2)

2

Ue O '§“y3_-2—')

Using the 1968 data on college 7 of ACT scores given in section 2,

and

the expected utilities for each job are given in column 2 to column 4 of
Table 2. Column 5 is the difference of column 2 and column 3, and
column 6 is the difference of column 3 and column 4. Column 5 and

column 6 change sign at x = 30 and x = 24, respectively. The optimal

assignment is

If x >30 assign applicant to job A.
If 30 > x>24 assign applicant to job B.

e 24 > % assign applicant to job C.

Insert Table 2 Near Here
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Again consider N applicants and without loss of generality
assume their test score satlisfices T(xl) :T(xl) 3...:T(XN).
We may have the following situations:
(1) quota free for all jobs, i.e. we can accept as many applicants
as we want for cach job,

(2) We want to accept exactly N, ,N N ... NR applicants for jobs

AT BTG

A,B,C,...R respectively., So in this case we assume

o SO \ = N.
NA+NB+NC +VR N

(3) For every job A,B,C,...R we want to accept at most NA' NB’ cee

N, respectively. So in this case we assume NA+NB+N

" + oMl 2N,

C

Before we find optimal decision procedure for the above situations
we should notice that (3) is the most general one. In situation (3) if
we have the additional condition that NA-NB-NC o NR = N then (3)

specializes to (1). If NA+NB+... +NR = N then we can also see (3)

specializes to (2). 1In the following we will consider situation (3)
first and discuss situations (1) and (2) in the corollary at the end
of this section.

Before we develop an optimal decision procedure for situation (3)
we need some definitions and preliminary results.

s

We can illustrate situation (3) as follows

Gl ielelielele]

. -\.___, . e e —
NC circles NB circles NA circles

where A,B,C... are job categories, and the number of circles
under each job is the number of openings for that job category. When
we assign an applicant to a job we put his number in the corresponding

circle. For example, the following picture represents our assigning




o

applicant 1 to job A, applicants 2 and 3 to job B.

... |..00L.06@....000)

By theorem (3) of the previous section and the assumption that

T(xl)i T(xz) Sk zj(xN). we can see that an applicant with a higher score
should occupy a position to the right of a lower score applicant. Thus,
we will only consider assignments that satisfy this condition. The

following assignment satisfies this condition.

06 1006 0R[EGORI0O

=3, N

Here we have 9 applicants and N =4, N, =2, N, = 3 and

A B c D

NR = 2.
We can also put index on the openings in the way that openings in

job A have index 1,2,...N, and openings for job B have index NA+1"°'N +N

A A B

respectively.
After assignment of all applicants we need the following definition.
Definition Chain 1is a set of consecutive applicants such that the
highest scoring applicant in the set occupies the first opening of the
job he got. All the job openings between the one occupied by the
highest score and the one occupied by the lowest score (in the chain) are
all occupied by the members of the chain. And there are still opening(s)
for the job that the lowest scored applicant In the chain got. Also,
there are still opening(s) for the job just to the right of the

opening(s) the highest scoring applicant got, if there are any.

® - - e
KR T ST 0 S ;
. ol Yoo Yy "-’ pevra -~ %
e 2 3 e T Rin sy e & Y £ -
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For example, in the above picture, applicant 1 is a chain and the
set of applicants 2,3,4,5,6,7,8 is also a chain,.

From the above definition, we can have the following lemma.

Lemma 2@ Suppose we have the optimal assipgnment of applicants 1,2,...N.
Let the highest scoring applicant in a chain be 1+1th applicant. We
assume there are K applicants in the chain occupying v+1, v+2,...v+k
indexed position. If we move j+l1, j+2,...j+% (where i+l < j+l < j+& < i+k,
i.e. all are in the chain) from positions v+1, v+2, ... v+& to positions
v-n+l, v-nt2, ... v-n+? (where n is any positive integer), then the
the total expected utility will decrease.

Proof: We first show that we shift i+l, i+2, ... i+% applicants from
v+l, v+2, ...v+Q to v+ntl, v+n+2, ... vintl then the total expected
utility will decrease or not change.

When i+1, i+2,...i+2 applicants shift from v+1l, v+2,...v#L to v,
v+l,...v+2-1 we can see the total expected utility will reduce or not
change because before the shift we already have optimal assignment.

Now i+2, i+3,...1i+% occupy positions v+1l, v+2,...v+2-1, respectively.
By theorem 2 of the previous section if we shift applicant 1+1,
i+2,...1+2-1 from positions v+l, v+2,...v#2=1 to v,v+l,...v+2-2 the total
expected value will decrease or not change. We can see that shifting
applicants 1+2, i+3,...1+% from v+1l, v+2,...v#8=1 to v, v+l,...v+2-2 will
reduce or not change total expected utility.

For those who occupy positions (note we only consider applicants

i+1, 1+2,...1+k) less than v+l we don't consider them because the more

to the right the less expected utility we will get from them.




Similarly, if we move i+3, i+4,...1+L from v+l, v+2, ...v+R-2

openings one positjon to the right the total expected utility will not
increase. Thus, we can see that moving i+1, i+2,... i+ from positions

vHl, v#2, ... vil to vil-n, v42-n,...vHl-n will not increase our total

expected utility.

Next we consider moving j+1, j+2,...j+2 applicants from v+l, v+2,...

v+ to positions v-n+l, v-n+2,... v-n+tl. By the above result and
Theorem 2 of the previous section we can see this action will not
increase the total expected utility.
Now we are ready to show optimal decision procedure for situation
(3). The procedure is as follows: i
We arrange the applicants according to their test scores and start
from the first person (who has the highest score) then the second,
third, etc... until the one who has the lowest test score using the )
following assigning algorithm. We consider ith applicant with test score
T(xi) (i=1.2, .. .N).
(i) assign the applicant to the job that gives highest expected

utility.

(i1) if the job in (i) is filled (i.e., filled by some people who
have higher test scores than T(xi)), then assign i to the same job as
(i-1)th applicant.

(i1i) if the job in (ii) is also filled we have to consider two
possible ways: kl) assign 1 to the next job opening that has lower
marginal utility than the job (i-1) applicant was assigned or (2) assign
i to the same job as (i-1) applicant, but now this job accepts more

applicants than its limit. Thus, we shift all applicants in the chain
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that contains (i-1)th applicant one position to the right. From these
two ways we select the one that has higher expected utility.

The above decision procedure is optimal since:

When (i) is true we can sce immediately we have assigned applfcant
1,2,... i-1, i optimally because we assigned applicant 1,2,...1~1 and
i optimally.

To consider (ii) we have to compare the assignment that satisfies
the condit ion that an applicant with a higher score should occupy a
position on the right. (This is another way of expressing Theorem 2 in

the previous section).

We know applicant i has to occupy an opening at least to the
right of the opening we originally assigned, or the new assignment
will not increase our total expected utility.

Let the new arrangement satisfy the above conditions. We will
shift our original arrangement in steps to the new arrangement such
that each step our total expected utility will not increase. And
thus our originally assignment has highest expected utility.

We first shift the last chain in our original arrangement one
position to the right. By (2) in Lemma 2, our total expected utility
will not increase (note ith applicant does not change job, although
he changes openings). Now we shift this chain to the right until ith
applicant occupies the same position as a new arrangement.

Fvery shift, by (3) in Lemma 2, will not increase total expected
utility. We now shift all except { to the right until i-1th applicant

occupies the position in the new arrangement. We now move

applicants in the last chain, except {~1 and 1 to the right until
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i-2th applicant occupies the positions in the new arrangement and
each step will not increase our total expected utility, thus (ii)
gets the highest expected utility,

It can be shown that ({ii) is optimal by exactly the same way

as in (11).

Corollary:

(1) For a quota free situation, the optimal decision procedure {is
to assign each applicant to the job that gives highest expected
utility.

(2) For situation (2), the optimal decisfon procedure is to assign
applicant 1,2,...N

to job A, NA+1' NA+2, sle'e NA+N to job

A B

B,..., and the last N applicants to job R.
The above corollary is a direct result of our previous decision

procedure,

——y

é
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Selections Considering Applicant's Preference

In this part, we take applicant's preference into consideration.
Suppose we have two jobs and N applicants. Every applicant states
which job he prefers. Let these two jobs be A and B and each has

0, and ng openings. We further assume ny ¥ ng > N and the decision

maker know each applicant's preference between jobs A and B. A
decision maker assigns each applicant to either job A or B but not

both

Let U (68) and U,(8) satisfy: )

U (8) > U,(0) (2)
' L}
U1 (8) > U2 (8) (3) .
Now we define utility functions. Suppose ith applicant prefers
job A to B. We assume
U;g(@) = U,(0)
where UiA(e) and UiB(e) are the utility function if we assign the
ith applicant to jobs A and B respectively.
Similarly, if jth applicant prefers job B to A, then
U =
A (8) = U, (0)
UJB(G) - Ul(e)
Every applicant will have higher utility if we assign him to the job
be perferred. Thus assumption (2) is very reasonable. We will see

the case when (3) is not true later in this part.
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A trivial special case is when n, "a, . N, then we assign
every applicant to the job he prefers.

Under the assumptions, the decision procedure that will maximize
the total sum of expected utility is as follows:

Arrange the applicants according to T(xl) :_T(xz) see > T(xn).
Starting from the first to the last applicant, assign each (say
ith) applicant to the job he preferred, if there is no opening for

that job (say already filled by 1, 2, 3 ... 1 - 1 applicant) then

assign him to the other job.

Next we prove the above algorithm maximizes the total expected utility.
Suppose at the end job A still has openings, then we cannot move any
applicants from job B to A. Those in job B prefer job B to A, (or they

will be in job A), thus moving them to A will not increase our total

expected utility. When job B still has openings we can prove optimality

in the same way.

Next suppose we assign j to job A and k to job B, we show

exchange of jobs between j and k will not increase our total expected

utility. Without loss of generality we assume T(x,) > T(xk). and

j
thus j applicant prefers job A to job B. If k applicant prefers

job B to job A, then j and k are happy and we should not exchange
their jobs.
If k applicant also prefers job A to B then UjA(O) = Upa(0) =

ul(e) and UB (8) = UkB(a) = U2(0). By Theorem 2, we have

VL (T(x D)+ V(Tx)) 2V, (T()) + V(T (x))

J
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Thus exchange j and k's job will not increase total expected
utfility. Thus we have optimal decision procedure,

10 we assume ul(u) and uz(u) satisty:

U, (0) > U,(0) (2)
Uz'(ﬁ) &> Ul'(O) M
and when { prefers job A to B then ULA(O) - ul(o) and uin(e) - 02(6).

Then the optimal decision procedure is as follows: Arrange
T(xl).i T(xz) vey F T(x“). but now starting from Nth applicant (the
one who has lowest test score) till the first applicant, assign any
applicant to the job he preferred, if no opening there then assign
him to the other job. The proof is the same as previous case.

In this case we honored lower score applicants first. This
may not be acceptable in most of the real world cases,

Another situation is that ul'(o) - Uz'(ﬂ).i.e. Ul(O) and U2(0) differ
by a constant. Optimal decisfon procedure is started from any one
applicant (each time arbitrary choose next applicant), {if the job
he preferred still has opening assign him to there if no opening,

assign him to the other job. We can see in this case a lot of arrange-

ments have maximum expected utility.




oo nll

Figure 2
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Table 1. The expected utilities for selection for two sample sizes at

the various points of the test scores.

Expected Utilities

n =105

0.057
0.081
0.112
0.154
0.206
0.269
0.342
0.422
0.507
0.591
0.672
0.744
0.807
0.859
0.899
0.930
0.952
0.968
0.979

n=10

0.457
0.471
0.488
0.507
0.529
0.555
0.585
0.618
0.653
0.689
0.723
0.752
0.773
0.788
0.796
0.800
0.800
0.799
0.796
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Table 2. The expected utilities and the differences of three normal i
utilities
Expected Utilities Difference
i Score v, (y) UB (y) Uc (y) UA (y) - U' (y) UB (y) = Uc (y)
; 0 0.070 0.239 0.333 -0.169 -0.094
2 0.088 0.263 0.353 -0.176 -0.090
4 0.109 0.289 0.373 -0.180 -0.084
i 6 0.134 0.316 0.394 -0.182 -0.078
8 0.164 0.344 0.415 -0.181 -0.071
10 0.197 0.374 0.437 -0.176 -0.063
12 0.236 0.404 0.458 -0.168 -0.055
14 0.278 0.434 0.480 -0.157 -0.046
; 16 0.324 0.466 0.502 -0.142 -0.036
18 0.373 0.498 0.524 -0.125 -0.026
20 0.424 0.528 0.545 -0.108 -0.017 ¥
2 0.476 0.560 0.567 -0.083 -0.007 ]
] 24 0.529 0.591 0.588 -0.061 0.002 Q
26 0.582 0.621 0.609 -0.039 0.011
28 0.632 0.650 '0.630 -0.018 0.020
30 0. 680 0.679 0.651 0.002 0.028
32 0.725 0.706 0.670 0.019 0.036
14 0.766 0.732 0.690 0.034 0.043

36 0.803 0.757 0.709 0.046 0.049
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ALEXANDRIA, VA 22332

Dr. Harold F. O'Neil, Jr.
ATTN: PERI-OK

5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

Dr. Robert Ross

U.5. Army Research Institute for the
Social and Behwvioral Sciences

5001 Eisenhower Avenue

Alexandria, VA 22333

Dr. Robert Sasmor

U. S. Army Research Institute for the
Behuvioral ond Social Sciences

5001 Eisenhower Avenue

Alexandria, VA 22333
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Arny

Director, Training Developuent

U, 5. Army Administration Center
ATTN: Dr, Sherrill

FL. Benjamin Harrison, IN 46213

Dr. Frederick Steinheiser

U. S. Army Reserch Institute
5001 Eisenhower Avenue
Alexendria, VA 22333

Or. Joseph lard

U.5, Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333
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Alr Force

AMr Force Human Resources Lab
AFPRL/PED
Prooks AFR, TX 79235

Alr University Library
AUL/LSE 767443
taxwell AFB, AL 36112

Dr. Philip De Leo
AFHRL/TT
Lowry AFB, CC 80230

DR. G. A. ECKSTRAND
AFHRL/AS
WRIGHMT=-PATTERSON AFB, OH 45133

Dr. Genevieve Haddod
Progrom banager

Life Sciences Directorate
AFOSR

Bolling AFB, DC 20332

CDR, NERCER

CNET LIAISON OFFICER
AFHRL/FLYING TRAINING DIV,
WILLIANS AFB, AZ 85224

Dr. Ross L. Morgan (AFHRL/ASR)
Wright -Patterson AFR
Ohio U543}

Dr. Roger Pennell
AFHRL/TT
Lowry AFB, CO 80230

Personnel Analysis Division
HQ USAF/DPXXA
Washington, DC 20330

Research Branch
AFMPC/DPMYP
Randolph AFB, TX 78148

Dr. Malcolm Ree
AFHRL/PED
Brooks AFB, TX 78235
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Air Force

Dr. Marty Rockway (AFHRL/TT)
Lowry AFB
Colorado 80230

Jack A. Thorpe, Capt, USAF
Program Manager

Life Sciences Directorate
AFOSR

Belling AFB, DC 20332

Brian K. Waters, LCOL, USAF
Air University

Maxwell AFB

Montgomery, AL 36112
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Marines

H. William Greenup
Education Advisor (E031)
Education Center, MCDEC
Quantico, VA 22134

Director, Office of Manpower Utilization
HQ, Marine Corps (MPU)

BCB, Bldg. 2009

Quantico, VA 22134

DR. A.L. SLAFKOSKY

SCIENTIFIC ADVISOR (CODE RD-1)
HQ, U.S. MARINE CORPS
WASHINGTON, DC 20380
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CoastGuard Other DoD
1 Mr. Richard Lanterman 12 Defense Documentation Center
PSYCHOLOGICAL RESEARCH (G-P-1/62) Cameron Station, Bldg. 5
U.S. COAST GUARD HQ Alexandria, VA 22314
WASHINGTON, DC 20590 Attn: TC
1 Pr. Thomas Warm 1 Dr. Dexter Fletcher
U. S. Coast Guard Institute ADVANCED RESEARCH PROJECTS AGEKCY
P. 0. Substation 18 1400 WILSON BLVD. i
Oklahoma City, OK 73169 ARLINGTON, VA 22209

1 Dr. William Graham !
Testing Directorate
MEPCCH
Ft. Sheridan, IL 60037 !

1 Military Assistant for Training and
Personnel Technology
Office of the Under Secretary of Defense
for Research & Engineering
Room 3D129, The Pentagon
Washington, DC 2C301

1 MAJOR Wayne Sellman, USAF
Office of the Assistant Secretary v
of Defense (MRA4L) '
3B930 The Pentagon
Washington, DC 20301
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Civil Govt

Dr. Susan Chipman

Basic Skills Program

National Institute of Education
1200 19th Street NW
Washington, DC 20208

Dr. William Gorham, Director
Personnel R&D Center

Office of Personnel Managment
1900 E Street MW

Washington, DC 20415

Dr. Joseph 1. Lipson
Division of Science Education
Room W-638

National Science Foundation
Washington, DC 20550

Dr. John Mays

National Institute of Education
1200 19th Street NW

Washington, DC 20208

Dr. Arthur Melmed

National Intitute of Education
1200 19th Street N
Washington, DC 20208

Dr. Andrew R. Molnar
Science Education Dev.

and Rosearch
Mational Science Foundation
Washington, DC 20550

Dr. Lalitha P. Sanathanan

Environnental Impact Studies Division

Argonne National Laboratory
9700 S. Cass Avenue
Argonne, IL 60439

Dr. Jeffrey Schiller

National Institute of Education
1200 19th St. NW

Washington, DC 20208

Civil Govt

Dr. Thomus G. Sticht
Basic Skills Program
National Institute of Education
1200 19th Street NW
Washington, DC 20208

Dr. Vern W. Urry

Personnel R&D Center

Office of Personnel Managment
1900 E Street NW

Washington, DC 20415

Dr. Frank Withrow

U. S. Office of Education
400 6th Street SW
Washington, DC 20202

Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550
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Non Govt

Dr. Earl A. Alluisi
FQ, AFHRL (AF3C)
Prooks AFB, TX 78235

Dr. Erling B. Andcrson
University of Copenhagen
Studiestraedt

Copenhagen

DENMARK

1 psychological research unit

Dept. of Defense (Army Office)
Campbell Park Offices

Canberra  ACT 2600, Australia

Dr. Alan Baddeley

Medical Research Council
Applied Psychology Unit

15 Chaucer Road

Cambridge CB2 2EF

ENGLAND

Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 03450

Dr. Warner Birice
Streitkraefteant
Rosenberg 5300

Sonn, West Germany D-=5300

Dr. R. Darrel Bock
PDepartment of Education
University of Chicago
Chicago, IL 60637

Dr. Nicholas A. Bond
Dept. of Psychology
Sacramento State College
600 Jay Street
Sacramento, CA 95819

Dr. David G. Bowers

Institute for Social Research
University of Michigan

Ann Arbor, MI 48106
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Non Govt

Dr. Robert Brennan

Americon College Testing Programs
P. 0. Eox 168

Towa City, IA 652240

DR. C. VICTOR BUNDERSON
WICAT INC.

UNIVERSITY PLAZA, SUITE 10
1160 50, STATE ST.

OREM, UT G4057

Dr. John B. Carroll
Psychometric Lab

Univ. of No. Carolina
Davie Hall 013A

Chapel Hill, NC 27514

Charles lyers Library
Livingstone House
Livingstone Road
Stratford

London E15 2LJ
ENGLAND

Dr. John Chiorini
Litton=Mellonics

box 1286

Springfield, VA 22151

Dr. Kenneth E., Clark
College of Arts & Sciences
University of Rochester
River Campus Station
Rochester, NY 14627

Dr. Norman Cliff

Dept. of Psychology
Univ, of So. California
University Park

Los Angeles, CA Q0007

Dr. William Coffiaan
Towa Testing Programs
University of Iowa
Iowa City, IA 52242
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Non Govt Non Govt
1 Dr. Meredith Crawford 1 Dr. Edwin A, Fleishman

Department of Engineering Administration Advanced Research Resources Organ.

George Washington University
Suite 805

2101 L Street N. W.
washington, DC 20037

Dr. Hans Cronbag
Education Research Center
University of Leyden
Boerhaavelaan 2

Leyden

The NETHERLANDS

Dr. Emmanuel Donchin
Department of Psychology
University of Tllinois
Champaign, IL 61820

MAJOR I. N. EVONIC

CANADIAN FORCES PERS. APPLIED RESEARCH
1107 AVENUE ROAD

TORONTO, ONTARIO, CANADA

Dr. Leonard Feldt

Lindquist Center for Measurment
University of Iowa

Iowa City, TA 52242

Dr. Richard L. Ferguson

The American College Testing Program
P.0. Box 168

Iowa City, IA 52240

Dr. Victor Fields
Dept. of Psychology
ffontgomery College
Rockville, MD 20850

Dr. Gerhardt Fischer
Liebigasse 5

Vienna 1010

Austria

Dr. Donald Fitzgeruld
University of New England
Armidale, New South VWales 2251
AUSTRALIA

Suite 900

4330 East West Highway
Washington, DC 20014

Dr. John K. Frederiksen
Bolt Beranek & Newnan
50 Moulton Street
Cambridge, MA 02138

DR. ROBERT GLASER

LRDC

UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

Dr. Ross Greene

CTB/McGraw Hill

Del Monte Research Park -~
Hfonterey, CA 93940

Dr. Alan Gross

Center for Advanced Study in Education
City University of New York

New York, NY 10036

Dr. Ron Hambleton

School of Education
University of Massechusetts
fmherst, NMA 01002

Dr. Chester Harris
School of Education
University of California
Santa Barbara, CA 93106

Dr. Lloyd Humphreys
Department of Psychology
University of Illinois
Champaign, IL 61820

Librory

HumRRO/Western Division
27857 Berwick Drive
Carmel, CA 093921
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Non Govt

Dr. Steven Hunka
Department of Education
University of Alberta
Edmonton, Alberta
CANADA

Dr. Earl Hunt

Pept. of Psychology
University of lashington
Seattle, WA 48105

Dr. Huynh Huynh

Department of Education
University of South Carolina
Columbia, SC 29208

Dr. Carl J. Jensema
Galloudet College
¥endall Green
Washington, DC 20002

Dr. Arnold F. Kanarick
Honeywell, Inc.

2600 Ridgeway Pkwy
Minneapolis, MN 55413

Dr. John A. Keats
University of Newcastle
Newcastle, New South Vales
AUSTRALIA

Mr. Marlin Kroger
1117 Via Goleta
Palos Verdes Estates, CA 90274

LCOL. C.R.J. LAFLEUR
PERSONNEL APPLIED RESEARCI
NATIONAL DEFENSE HQS

101 COLOMEL BY DRIVE
OTTAWA, CANADA K1A OK2

Dr. Michael Levine
Department of Educational Psychology
University of Illinois
Champaign, IL 61820
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Non Govt

Faculteit Sociale Vetenschappen
Ri jksuniversiteit Groningen
Oude Boteringestraat

Groningen

NETHERLANDS

Dr. Robert Linn
College of Education
University of Illinois
Urbana, IL 61801

Dr. Frederick M., Lord
Educational Testing Service
Princeton, NJ (€3540

Dr. Gary HMarco
Educational Testing Service
Princeton, NJ 08450

Dr. Scott Maxwell
Department of Psychology
University of Houston
Houston, TX 7702%

Dr. Sam Mayo
Loyola University of Chicago
Chicago, IL 60601

Dr. James A, Paulson
Portland State University
P.0. Box 751

Portland, OR 97207

MR. LUIGI PETRULLO
2u31 N. EDGEWOOD STREET
ARLINGTON, VA 22207

DR. STEVEN M. PINE
4950 Douglas Avenue
Golden Valley, MN 55416

DR. DIANE M. RAMSEY-KLEE

R-K RESEARCH & SYSTEM DESIGN
3947 RIDGEMONT DRIVE

MALIBU, CA 90265
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Non Govt

v 1 MIN. RET. M. RAUCH
PII Y
BUNDESMINISTERIUM DER VERTEIDIGUNG
POSTFACH 161
53 BONN 1, GERMANY

1 Dr. Peter B. Read
Social Science Research Council
605 Third Avenue
New York, NY 10016

1 Dr. Mark D. Reckase
Educational Psychology Dept.
University of Missouri-Colunbia
12 Hill Hall
Columbia, MO 65201

1 Dr. Andrew M. Rose
American Institutes for Research
1055 Thomas Jefferson St. NW
Washington, DC 20007

1 Dr. Leonard L. Rosenbaum, Chairman
Department of Psychology
Montgomery College
Rockville, MD 20850

1 Dr. Ernst Z. Rothkopf
Bell Laboratories
500 Mountain Avenue
Murray Hill, NJ 07974

1 Dr. Donald Rubin
Educational Testing Service
Princeton, NJ 08450

1 Dr. Larry Rudner
Gallaudet College
Kendall Green
Washington, DC 20002

1 Dr. J. Ryan
Department of Education
University of South Carolina
Columbia, SC 29208

Page 11

Non Govt

PROF. FUMIKO SAMEJIMA
DEPT. OF PSYCHOLOGY
UNIVERSITY OF TENNESSEE
KNOXVILLE, TN 37916

Dr. Kazao Shigemasu

University of Tohoku

Department of Educational Psychology
Kawauchi, Sendai 982

JAPAN

Dr. Richard Snow

School of Education
Stanford University
Stanford, CA 94305

Dr. Robert Sternberg

Dept. of Psychology

Yale University

Box 11A, Yale Station {
New Haven, CT 06520

DR. PATRICK SUPPES

INSTITUTE FOR MATHEMATICAL STUDIES IN
THE SOCIAL SCIENCES

STARFORD UNIVERSITY

STANFORD, CA 9u305

Dr. Hariharan Swaminathan
Laboratory of Psychometric and
Evaluation Research

School of Education
University of Massachusetts
Amherst, MA 01003

Dr. Brad Sympson

Office of Data Analysis Research
Educational Testing Service
Princeton, NJ 03541

Dr. Kikumi Tatsuoka

Computer Based Education Research
Laboratory

252 Engineering Research Laboratory

University of Illinois

Urbana, IL 61801
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Non Govt

Dr. Maurice Tatsuoka

Pepartment of FEducationz2l Psychology
University of Illinois

Champaign, IL 61901

Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044y

Dr. Robert Tsutakawa
Dept. of Statistics
University of llIssouri
Columbia, MO 65201

Dr. J. Uhlaner
Perceptronics, Inc.

6271 Variel Avenue
Woodland Hills, CA 91364

Dr. Howard Wainer

Fureau of Social SCience Research
1990 M Street, N, M.

Wlashington, DC 20036

DR. THOMAS WALLSTEN
PSYCHOMETRIC LABORATORY
DAVIE HALL 012A
UNIVERSITY OF NORTH CAROL
CHAPEL HILL, NC 27514

Dr. David J. Weiss

N660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

DR. SUSAN E. WHITELY
PSYCHOLOGY DEPARTMENT
UNIVERSITY OF KANSAS
LAWRENCE, KANSAS 66044

Dr. Wolfgang Wildgrube
Streitkraefteamt
Rosenberg 5300

Bonn, West Germany D-5300
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Non Govt

Dr. J. Arthur loodward
Pepartment of Psychology
University of California
Los Angeles, CA 90024

Dr. Robert loud

School Examination Departuent
University of London

05-72 Gower Street

London WCIE GEE

ENGLAND

Dr. Karl Zinn

Center for research on Learning
and Teaching

University of Michigan

Ann Arbor, NI 48104






